Domination and Eternal Domination of Jahangir Graph

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domination in Jahangir Graph

Given graph G = (V,E), a dominating set S is a subset of vertex set V such that any vertex not in S is adjacent to at least one vertex in S. The domination number of a graph G is the minimum size of the dominating sets of G. In this paper we study some results on domination number, connected, independent, total and restrained domination number denoted by γ(G), γc(G) ,γi(G), γt(G) and γr(G) resp...

متن کامل

Domination, eternal domination and clique covering

Eternal and m-eternal domination are concerned with using mobile guards to protect a graph against infinite sequences of attacks at vertices. Eternal domination allows one guard to move per attack, whereas more than one guard may move per attack in the m-eternal domination model. Inequality chains consisting of the domination, eternal domination, m-eternal domination, independence, and clique c...

متن کامل

Eternal domination: criticality and reachability

We show that for every minimum eternal dominating set, D, of a graph G and every vertex v ∈ D, there is a sequence of attacks at the vertices of G which can be defended in such a way that an eternal dominating set not containing v is reached. The study of the stronger assertion that such a set can be reached after a single attack is defended leads to the study of graphs which are critical in th...

متن کامل

Bounds for the $m$-Eternal Domination Number of a Graph

Mobile guards on the vertices of a graph are used to defend the graph against an infinite sequence of attacks on vertices. A guard must move from a neighboring vertex to an attacked vertex (we assume attacks happen only at vertices containing no guard and that each vertex contains at most one guard). More than one guard is allowed to move in response to an attack. The m-eternal domination numbe...

متن کامل

On exponential domination and graph operations

An exponential dominating set of graph $G = (V,E )$ is a subset $Ssubseteq V(G)$ such that $sum_{uin S}(1/2)^{overline{d}{(u,v)-1}}geq 1$ for every vertex $v$ in $V(G)-S$, where $overline{d}(u,v)$ is the distance between vertices $u in S$ and $v  in V(G)-S$ in the graph $G -(S-{u})$. The exponential domination number, $gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Journal of Discrete Mathematics

سال: 2019

ISSN: 2161-7635,2161-7643

DOI: 10.4236/ojdm.2019.93008